Research Funded by Zegar Family Foundation Finds New Genetic Interdependence Between Mothers and Their Offspring
A team of biologists has discovered that the distinctive genetic processes of early development help explain patterns of animal development in nature and across the evolutionary tree. Its findings point to a largely overlooked dynamic between the genome of mothers and their developing progeny--and one that underscores this genetic interaction as a primary influence on evolution.
"Some offspring traits, such as size, are determined by the mother's genome, but other offspring traits are shaped by the offspring's genome itself," explains Matthew Rockman, an associate professor in New York University's Department of Biology and the senior author of the paper, which appears in the journal eLife. "As a result, there may be genetic mismatches between mother and offspring, which can sometimes hinder adaptation to ecological conditions."
The study, the first genetic analysis of a transition from indirect to direct development, one of the most common evolutionary patterns across the history of animal life, was led by Christina Zakas, an NYU postdoctoral research scientist.
Many animals develop indirectly, growing first into a larva that must feed itself before metamorphosis into its juvenile form. However, some lineages have abandoned this larval mode of development, switching to direct development--skipping the larval phase and hatching as a small version of the adult...