Helmsley Charitable Trust Funded Research Solves Genetic ‘Whodunnit’ for Cancer Gene

Friday, November 9, 2018

Helmsley Charitable Trust Funded Research Solves Genetic ‘Whodunnit’ for Cancer Gene

The lab of Salk Professor Reuben Shaw showed that late-stage cancers can trigger AMPK’s cellular recycling signal to cannibalize pieces of the cell, supplying large lung tumors with the nutrients they need to grow. The work, which appeared in Cell Metabolism on November 8, 2018, suggests that blocking AMPK in some conditions could stop the growth of advanced tumors in the most common type of lung cancer.

“Our study shows that the same dysfunction in a genetic circuit that causes non-small-cell lung cancer to begin with is necessary for more mature tumor cells to survive when they don’t have enough nutrients,” says Shaw, director of the Salk Cancer Center and the paper’s senior author. “It’s exciting because not only does it solve a genetic ‘whodunnit,’ but it also points to a potential new therapeutic target for a cancer that is often diagnosed very late.”

AMPK acts as a fuel gauge for the cell, overseeing energy input and output to keep the cell running smoothly. Similar to a car sensor flashing a low-gas signal or turning off a vehicle’s AC to save energy, AMPK slows down cell growth and changes the cell’s metabolism if the cell’s fuel (nutrients) is low. Previously, Shaw discovered that AMPK could halt tumors’ revved-up metabolism, as well as restore normal function to the liver and other tissues in diabetics...

Find More By

News type 
Funding Area